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Abstract

Mechanical exfoliation remains the most common method for producing high-quality two-
dimensional (2D) materials, but its inherently low yield requires screening large numbers of
samples to identify usable flakes. Efficient optimization of the exfoliation process demands
scalable methods to analyze deposited material across extensive datasets. While machine
learning clustering techniques have demonstrated ~95% accuracy in classifying 2D material
thicknesses from optical microscopy images, current tools are limited by slow processing
speeds and heavy reliance on manual user input. This work presents an open-source, GPU-
accelerated software platform that builds upon existing classification methods to enable
high-throughput analysis of 2D material samples. By leveraging parallel computation,
optimizing core algorithms, and automating preprocessing steps, the software can quantify
flake coverage and thickness across uncompressed optical images at scale. Benchmark
comparisons show that this implementation processes over 200× more pixel data with
a 60× reduction in processing time relative to the original software. Specifically, a full
dataset of2916 uncompressed images can be classified in 35 min, compared to an estimated
32 h required by the baseline method using compressed images. This platform enables
rapid evaluation of exfoliation results across multiple trials, providing a practical tool for
optimizing deposition techniques and improving the yield of high-quality 2D materials.

Keywords: 2D materials; graphene; machine learning; clustering; image processing; optical
classification; unsupervised learning; parallel computing

1. Introduction
Two-dimensional (2D) materials have attracted significant interest in recent years due

to their unique physical properties and potential applications in electronics, including su-
perconductors for quantum computing and high-precision RF sensors [1–4]. Among these,
graphene remains the most prominent example [5]. Although other methods such as chem-
ical vapor deposition, liquid exfoliation, and electrochemical exfoliation exist, mechanical
exfoliation of bulk crystals continues to be the most widely used technique for producing
high-quality, single-grain flakes. However, this process is labor-intensive and yields a
low number of usable flakes, necessitating the preparation of large numbers of samples to
identify candidates [6–8]. This publication focuses on quantifying the yield of mechanically
exfoliated 2D materials using optical classification techniques. The method presented here
can be universally applied to any mechanically exfoliated 2D material that can be deposited
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on a substrate and then identified through optical contrast, including graphene, MoS2,
MoSe2, WS2, WSe2, hBN, and others.

Mechanical exfoliation parameters, such as tape removal speed and angle, have been
shown in theoretical studies to significantly affect flake deposition, yet they are often
neglected in practice in favor of improving yields through generating high volumes of
samples [9]. Most researchers still rely on manual inspection through optical microscopes
to identify suitable flakes, making it difficult to systematically evaluate the impact of
exfoliation conditions. As a result, little practical work has focused on optimizing the
process for higher-yield production of 2D materials. To enable such optimization, robust
software tools are needed to quantify flake coverage and thickness across large, diverse
sample sets.

Several recent studies have proposed automated optical classification techniques for
2D materials. However, these are typically designed only to assist in identifying flakes
for device fabrication, not for large-scale statistical analysis. For example, some tools
require manual region selection in microscopy images [10], while others use supervised
learning methods that demand extensive labeled datasets [11]. Another approach provides
real-time feedback during manual scanning, but is not suited for batch processing of large
datasets [12]. Limitations, such as dependence on user input and lack of scalability, have
hindered their use in process optimization studies.

This work builds on a previously published platform designed for rigorously control-
ling and quantifying the tape removal angle and speed in order to reliably reproduce me-
chanical exfoliation parameters [13]. Presented here is an improved, open-source software
tool that integrates GPU acceleration, automated image preprocessing, and parallelized
execution for high-throughput optical classification of 2D materials. The software extends
an existing state-of-the-art unsupervised clustering method, improving upon its execution
time limitations to allow for rapid analysis of large datasets with minimal user interven-
tion [10]. It combines traditional image processing techniques with machine learning to
classify flake thicknesses based on optical contrast. An overview of the software workflow
is shown in Figure 1.

Figure 1. Overview of software platform. Training data is preprocessed and then clustered in RGB
space using mean-shift clustering, grouped using Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), and fit to arbitrary normal distributions using a Gaussian Mixture Model
with Expectation Maximization (GMM-EM), after which clusters are manually labeled in a catalog
by material thickness. The training catalog is used to rapidly (~0.7 s per 2048 × 1536 pixel image)
classify full-size images automatically for a large dataset. The final results are exported to a CSV file
containing the area and thickness of each classified region, allowing for comparison to determine the
efficacy of different deposition techniques.
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2. Materials and Methods
2.1. Background

Mechanical exfoliation of 2D materials involves repeatedly peeling layers from a bulk
crystal using adhesive tape to thin the flakes attached. These flakes are then transferred to
a target substrate, such as SiO2, where they are typically identified by visually inspecting
optical contrast under a microscope. While effective for isolated sample preparation, this
manual inspection process is impractical for large-volume applications requiring statistical
evaluation of numerous samples.

The inability to efficiently process large datasets makes it difficult to assess how
exfoliation parameters affect flake yield and quality. To address this challenge, we de-
velop an open-source software platform that automates the classification of 2D material
flakes using image processing and machine learning methods. Building on recent devel-
opments in the field [10–12], this tool enables rapid statistical analysis of deposited flake
area and thickness across a wide range of samples, providing a foundation for optimizing
exfoliation procedures.

2.2. Software Overview

The software platform was developed by adapting an existing open-source segmenta-
tion model previously shown to achieve high classification accuracy for 2D materials [10].
While achieving desirable results, the original implementation was not optimized for large-
scale datasets, creating problems when trying to analyze trends across many samples.
Training the previous version of the model on just 10 images reportedly required 10 h
and images classification was estimated to take approximately one minute to process each
image. For a practical example, scanning a 15 × 20 mm substrate using a 20× objective
at 2048 × 1536 resolution yields 2916 images and processing would take over 48 h at this
rate. Furthermore, the model required manual user input to define the substrate back-
ground for each image, which is impractical when processing thousands of images across
multiple samples.

To address these limitations, the software must be adapted to meet three key require-
ments: (1) minimize manual user input, (2) significantly accelerate the classification process
while maintaining accuracy, and (3) enable automatic export of layer thickness and area
data for high-volume statistical analysis. The Python version 3.11.9 libraries used are listed
in Appendix A.1.

The platform operates in two phases: a training phase and a testing phase. Dur-
ing training, users provide cropped images of individual flakes representing known thick-
nesses. These examples are preprocessed and clustered in RGB color space to identify
distinct optical layer regions. The resulting clusters are then labeled by thickness (in layer
count), and this data is stored in a master catalog. Each master catalog is trained on a
specific set of conditions (e.g., material type, substrate, lighting), but can be reused to
classify other images captured under relatively similar conditions. The system is designed
to easily be adapted to new materials and substrates by quickly retraining another master
catalog for each use case. Retraining takes approximately 45 s per image, and is effective at
classification with as few as 1 or 2 examples of each classification category, allowing users
to rapidly build catalogs for different conditions and materials.

In the testing phase, full-size images are processed by comparing their pixel values
to the master catalog. Each pixel is classified by thickness group, and area statistics are
computed for each category. The software is designed for use on systems with Graph-
ics Processing Units (GPUs), enabling parallelized execution that dramatically improves
processing speed over the original CPU-bound implementation.
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2.2.1. Image Processing Pipeline

In the training phase, users manually select flake-containing regions and define a
rectangular crop for each image through the software interface. A small area of background
is also selected and masked to enable normalization during preprocessing. The prepro-
cessing pipeline includes bilateral filtering for noise reduction and planar background
correction based on the masked region. This image filtering and normalization process
compensates for variations that may be present throughout optical scans taken from a
particular microscope setup.

Each processed image is then clustered in RGB color space using mean-shift clus-
tering. The resulting pixel groups are refined using Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), followed by fitting to Gaussian Mixture Models via
Expectation Maximization (GMM-EM) to determine the ellipsoidal parameters that best
describe the data distributions. These cluster descriptors are stored in a catalog file, which
serves as the basis for classifying full-resolution images during the testing phase.

This cataloging pipeline prioritizes classification accuracy over raw speed. In contrast to
related works that employ K-means clustering, this approach uses mean-shift clustering for its
adaptability. While K-means is a faster, centroid-based algorithm with linear time complexity,
it requires the number of clusters to be specified in advance and performs poorly when
clusters vary in shape and size. Mean shift, a density-based method, avoids this limitation by
discovering cluster structures directly from the data without prior assumptions [14,15].

2.2.2. GPU Acceleration

The original segmentation software was introduced as a proof of concept for unsuper-
vised clustering, and was not optimized for performance. Its image processing pipeline
relied heavily on nested Python loops executed sequentially on a single CPU thread, result-
ing in significant execution bottlenecks when processing large image sets.

To address these limitations, enhancements were made of the existing open-source
implementation to support GPU acceleration using CuPy version 13.5.1, a Python library
for numerical computation built on Nvidia’s CUDA (Compute Unified Device Architecture)
platform. CuPy is designed as a near drop-in replacement for NumPy and SciPy, enabling
GPU-based execution with minimal code modification [16,17].

In traditional CPU-based implementations, operations such as pixel-wise transfor-
mations (e.g., brightening an image) require iterating through each pixel in sequence,
consuming many instruction cycles. In contrast, CuPy translates such operations into pre-
compiled CUDA kernels that launch a grid of parallel threads, each responsible for a single
pixel. This massively parallel execution enables all pixels to be processed simultaneously
in a single operation.

All image processing components in the pipeline were reimplemented using CuPy
to achieve full parallelization while maintaining functional equivalence with the original
code. Hardware acceleration of image processing has been widely adopted in research due
to its ability to dramatically reduce runtime for computationally intensive tasks [18,19].
A summary of the resulting gains in time complexity is presented in Table 1.

Table 1. Overview of major computation optimizations.

Operation Optimization

Overall Execution Order CPU sequential iterations → GPU
parallelized batches

Multivariate Gaussian Computation 1,2 O(n · m2) → O(n · m)
Mean-Shift Distance Computation 1,3,4 O(n · w · h) → O(n)

1 n = number of pixels; 2 m = number of clusters; 3 w = width of image in pixels; 4 h = height of image in pixels.
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2.2.3. Automatic Background Masking

The classification pipeline was redesigned for full automation to eliminate require-
ments for manual user intervention. Mechanical exfoliation procedures can be followed by
automated scanning of entire sample surfaces using optical microscopy, producing large
directories of high-resolution images. Once a master catalog has been trained, the software
can be applied directly to these image directories, performing batch classification and
exporting results for downstream analysis without user input.

Originally, the preprocessing stage required users to manually define a background
region for each image to support planar fit normalization. This process was replaced with
an automated background detection method based on GPU-accelerated local variance
thresholding, which identifies substrate regions based on their uniform texture [20,21].

The algorithm begins by applying bilateral filtering to reduce noise. It then calculates
local variance for each pixel using a sliding window, evaluating both grayscale and RGB
channels. A combined variance image is created, and then a binary background mask is
generated by classifying pixels below the variance threshold as background. Morphological
dilation and erosion operations are applied to refine the mask by removing artifacts and
filling small gaps.

Automating background mask generation enables complete image classification to
proceed without any required user annotations. An example of a generated background
mask and the corresponding preprocessed image is shown in Figure 2.

Original microscope scan image

20 µm

(a)

Automated background mask

(b)

Preprocessed Image

(c)

Figure 2. Steps in the preprocessing pipeline when using automated background masking. (a) Orig-
inal 20× magnification full-size microscope image scan, 2048 × 1536 pixels. (b) Mask generated
from automatic background detection, highlighted as darker gray region. (c) Final image after com-
pletion of preprocessing, application of a bilateral filter to reduce noise, then use of the detected
background-mask as a baseline to normalize substrate RGB values via planar fit.

2.2.4. Data Export and Statistical Analysis

Testing images were captured using a 25 × 15 mm SiO2 substrate on an HQGraphene
HQ2D MOT 2D (HQGraphene, Groningen, The Netherlands) material transfer station.
The entire surface was imaged using a 20× objective lens with automated scanning, resulting
in a dataset of 2916 images at 2048 × 1536 resolution.

During classification, visualizations of each processing step comparing the original
image with layer-classified regions can be automatically exported as PNG files. These
overlays provide user feedback and display each flake region color-coded by thickness
labels. This visualization feature can be optionally disabled to reduce processing time when
only data output is required.

In addition to image overlays, a CSV file is generated for each classified image. This
file contains structured data for postprocessing and statistical analysis. Each row represents
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a single flake region and includes the following fields: image filename, region ID, estimated
thickness (in number of layers), area (in pixels), and mean RGB values of the region. This
standardized output format facilitates downstream analysis using tools such as Python, R,
or spreadsheet software.

3. Results
3.1. Performance Benchmarking

Performance benchmarking was conducted on a ThinkPad P1 Gen 6 (Lenovo, Beijing,
China) laptop equipped with an Nvidia RTX 4090 Max-Q GPU, an Intel i9-13900H CPU,
and 64 GB of RAM. All tests compared the original single-threaded software against the
GPU-enhanced implementation. Notably, the original software applied image compression
during processing, reducing the number of pixels analyzed and offering a computational
advantage. In contrast, the vectorized version processed full-resolution, uncompressed
images. A summary of the benchmark results is shown in Figure 3.

Training performance was evaluated using a cropped flake image from the origi-
nal dataset. The original software, using a compressed 90 × 112 image (10,080 pixels),
required 2835.77 s (~47 min) to complete training. In comparison, the GPU-accelerated
implementation was trained on the full 800 × 1000 uncompressed image (800,000 pixels) in
only 44.52 s—representing a 63× increase in speed, despite operating on nearly 79× more
pixel data.

Classification performance was benchmarked using the same full-size
4912 × 3684 image (18,095,808 pixels). The GPU implementation completed classification
in 0.67 s, while the original software, using a compressed 347 × 260 version (90,220 pixels),
required 40.44 s. This equates to a 60× reduction in processing time while processing over
200× more data.

Execution Time (sec)

Original Software Vectorized Software

0 500 1000 1500 2000 2500 3000

Training
2835.77

44.00

0 10 20 30 40 50

Classification
40.44

0.67

Processed Image Size (pixels)

Original Software Vectorized Software

0 200,000 400,000 600,000 800,000

Training
10,080

800,000

0

5,0
00,0

00

10
,0

00,0
00

15,0
00,0

00

20,0
00,0

00

Classification
90,220

18,095,808

~63x faster on 
~79x more pixel data

~60x faster on 
~200x more pixel data

Benchmark Results

Vectorized Performance Gain

Figure 3. Execution time comparison showing a 63× speedup in training and 60× speedup in
classification using the vectorized GPU implementation. Despite processing full uncompressed
images and running additional background detection steps, the new method significantly outperforms
the original, which uses image compression and predefined masks.

In large-scale testing, the GPU-accelerated software can classify an entire uncom-
pressed dataset of 2916 images in approximately 35 min. The original software, by extrapo-
lation, would require over 32 h to process the same dataset. These performance gains are
especially notable given the additional required computation overhead in the GPU version
for automatic background masking and processing uncompressed pixel data.

3.2. Classification Accuracy

Classification accuracy was validated using the test images and ground truth data from
the original publication [10]. The GPU-accelerated software achieved an average pixel-wise
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classification accuracy of approximately 95%, consistent with the original implementation.
Ground truth masks were manually recolored and used to generate confusion matrices and
error visualizations, as shown in Figure 4.

Original Image Ground Truth Predicted Result

Prediction Error

Figure 4. Example test from image illustrating similar classification accuracy to baseline method. Orig-
inal image is of MoS2 on PDMS substrate used for testing [10]. Ground truth regions were manually
labeled and compared to the software output by raw pixel count, resulting in an average prediction
accuracy of ~95%. Confusion matrix and pixel error visualization are included for comparison.

Additional classification examples are provided in Appendix A.2.

4. Discussion
This work presents an open-source software platform designed to automate the classifi-

cation of large datasets of optical microscopy images for evaluating 2D material deposition
yields. The platform is lightweight enough to run on consumer-grade laptops equipped
with dedicated GPUs. By leveraging GPU acceleration, the software achieves significant
speed improvements while maintaining high classification accuracy. The ability to process
uncompressed images allows for preservation of subtle optical contrast features that might
otherwise be lost during preprocessing or compression.

Reducing the training time from approximately 47 min to 44 s enables rapid iteration
when building or refining the classification catalog. This transforms catalog generation
from an all-day task to one that can be completed in under an hour, significantly lowering
the labor cost associated with dataset preparation for different materials or substrates.

The platform is designed for minimal user input. A key feature is the automated
background masking algorithm, which eliminates the need for manual cropping by iden-
tifying background regions based on local texture variance. This capability enables fully
automated classification of large directories of high-resolution images, supporting scalable
analysis of exfoliation procedures across many test samples.

Limitations

An individual classification master catalog is required to be trained for each specific
combination of 2D material, substrate, and microscope scanning setup. This software does
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not currently support transfer learning or domain adaptation techniques that could allow a
single catalog to generalize across multiple scenarios. This requirement is minimized by
the speed at which a software catalog can be trained and the low amount of image data
necessary. Catalog training requires less than a minute per image and can effectively classify
with as few as one or two examples from each cluster category. The classification accuracy
testing detailed in Appendix A.2 was achieved using a single training flake image to
generate each catalog for a material-on-substrate combination. Training and testing images
are available from the original publication [10] and the software source code’s GitHub Page:
https://github.com/AQUAMAG/hardware-accelerated-2d-material-classifier, accessed
on 15 August 2025.

The current implementation relies on the CuPy Python library, and is therefore limited
to systems with Nvidia GPUs with CUDA capability. The codebase can be adapted to
run on CPU-only systems with minor modifications to replace CuPy with NumPy, albeit
with greatly reduced performance. While it is technically possible for it to run on CPU-
only systems, at least a single dedicated GPU is typically considered to be required for
applications of image processing in general. All benchmarks were performed on a laptop
with a single mobile GPU, demonstrating that high-end desktop hardware is not required.
This is not a significant limitation, as consumer-grade laptops with dedicated GPUs are
widely available and affordable. Lower-specification GPUs may result in longer processing
times, but are expected to perform adequately for most use cases.

Automatic background masking assumes a relatively uniform and consistent substrate
texture. In cases where the background is highly variable or non-uniform, the automated
method may fail to accurately identify the substrate. In such instances, users may revert to
manual background masking to ensure correct classification. The software testing function
retains the option for manual definition of a background region if needed, and the existing
catalog can be rerun on these images separately.

The flake identification algorithm performs best with monolayer and few-layer flakes.
Thicker flakes, which can sometimes overlap with residues in RGB space, could have small
portions that may be misclassified. This was greatly mitigated by treating thicker flakes as
a single classification group representing a range of layers, along with training to classify
residue as a different category. As a result of these training changes, the software can
distinguish between residue and thick flakes as whole classification categories. This does
not pose a significant concern, because thicker flakes are typically of less interest for 2D
material applications and are not expected to require individual layer thickness analysis.
The software is optimized to classify the bulk area of flakes, enabling meaningful statistical
comparisons of deposition results across samples.

5. Conclusions
In summary, this publication presents a GPU-accelerated, open-source software plat-

form for the rapid and automated classification of 2D material thicknesses from optical
microscopy images. By extending and optimizing an existing unsupervised clustering
framework, the platform achieves classification accuracy of approximately 95% while pro-
cessing over 200× more pixel data in a fraction of the time. The method presented here can
be universally applied to any mechanically exfoliated 2D material that can be deposited
on a substrate then identified through optical contrast, including graphene, MoS2, MoSe2,
WS2, WSe2, hBN, and others.

The software enables high-throughput analysis of mechanically exfoliated samples,
reducing training and classification times by over 60×. This facilitates systematic studies
of deposition conditions across large datasets, supporting efforts to optimize exfoliation
techniques and improve the yield of high-quality 2D materials.

https://github.com/AQUAMAG/hardware-accelerated-2d-material-classifier
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-dimensional
CPU Central processing unit
CuPy GPU-accelerated numerical computations library for Python
DBSCAN Density-based spatial clustering of applications with noise
GMM-EM Gaussian mixture model with expectation maximization
GPU Graphics processing unit
MoS2 Molybdenum disulfide
MoSe2 Molybdenum diselenide
PDMS Polydimethylsiloxane
RGB Red, green, blue
SiO2 Silicon dioxide

Appendix A
Appendix A.1. Python Code and Packages

The hardware accelerated software source code is available on the GitHub Page:
https://github.com/AQUAMAG/hardware-accelerated-2d-material-classifier, accessed
on 15 August 2025.

The software is written in Python and uses the following packages:

• CuPy version 13.5.1 for GPU accelerated numerical computations;
• NumPy version 2.2.5 for numerical computations;
• OpenCV version 4.10.0 for image preprocessing;
• Matplotlib version 3.10.1 for visualization.

Appendix A.2. Accuracy Validation

The software was validated using the test images and ground truth data available from
the original publication to allow for baseline comparison [10]. The ground truth masks
were manually recolored and used to generate confusion matrices and error visualizations.
The data maintains an average pixel-wise classification accuracy of approximately 95%,
consistent with the original implementation.

https://github.com/AQUAMAG/hardware-accelerated-2d-material-classifier
https://github.com/AQUAMAG/hardware-accelerated-2d-material-classifier
https://github.com/AQUAMAG/hardware-accelerated-2d-material-classifier
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Original Image Ground Truth Predicted Result

Prediction Error

Figure A1. Example of classification of MoS2 flake on SiO2 substrate. Original image provided by
original segmentation software publication [10].

Prediction Error

Original Image Ground Truth Predicted Result

Figure A2. Classification example of MoSe2 flake on PDMS substrate. Original image provided by
original segmentation software publication [10].

References
1. Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in

magic-angle graphene superlattices. Nature 2018, 556, 43–50. [CrossRef] [PubMed]
2. Sulleiro, M.V.; Dominguez-Alfaro, A.; Alegret, N.; Silvestri, A.; Gómez, I.J. 2D Materials towards sensing technology: From

fundamentals to applications. Sens. Bio-Sens. Res. 2022, 38, 100540. [CrossRef]
3. Huffstutler, J.D.; Wasala, M.; Richie, J.; Barron, J.; Winchester, A.; Ghosh, S.; Yang, C.; Xu, W.; Song, L.; Kar, S.; et al. High Perfor-

mance Graphene-Based Electrochemical Double Layer Capacitors Using 1-Butyl-1-methylpyrrolidinium tris (pentafluoroethyl)
trifluorophosphate Ionic Liquid as an Electrolyte. Electronics 2018, 7, 229. [CrossRef]

4. Planillo, J.; Alves, F. Fabrication and Characterization of Micrometer Scale Graphene Structures for Large-Scale Ultra-Thin
Electronics. Electronics 2022, 11, 752. [CrossRef]

http://doi.org/10.1038/nature26160
http://www.ncbi.nlm.nih.gov/pubmed/29512651
http://dx.doi.org/10.1016/j.sbsr.2022.100540
http://dx.doi.org/10.3390/electronics7100229
http://dx.doi.org/10.3390/electronics11050752


Micromachines 2025, 16, 1084 11 of 11

5. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect
in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef] [PubMed]

6. Liu, Y.; Weiss, N.; Duan, X.; Cheng, H.C.; Huang, Y.; Duan, X. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016,
1, 16042. [CrossRef]

7. Yi, M.; Shen, Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015 ,
3, 11700–11715. [CrossRef]

8. Islam, M.A.; Serles, P.; Kumral, B.; Demingos, P.G.; Qureshi, T.; Meiyazhagan, A.; Puthirath, A.B.; Abdullah, M.S.B.; Faysal, S.R.;
Ajayan, P.M.; et al. Exfoliation mechanisms of 2D materials and their applications. Appl. Phys. Rev. 2022, 9, 041301. [CrossRef]

9. Gao, E.; Lin, S.Z.; Qin, Z.; Buehler, M.J.; Feng, X.Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys.
Solids 2018, 115, 248–262. [CrossRef]

10. Sterbentz, R.M.; Haley, K.L.; Island, J.O. Universal Image Segmentation for Optical Identification of 2D Materials. Sci. Rep. 2021,
11, 5808. [CrossRef] [PubMed]

11. Leger, P.A.; Ramesh, A.; Ulloa, T.; Wu, Y. Machine Learning Enabled Fast Optical Identification and Characterization of 2D
Materials. Sci. Rep. 2024, 14, 27808. [CrossRef] [PubMed]

12. Uslu, J.L.; Ouaj, T.; Tebbe, D.; Nekrasov, A.; Bertram, J.H.; Schütte, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Waldecker,
L.; et al. An Open-Source Robust Machine Learning Platform for Real-Time Detection and Classification of 2D Material Flakes.
Mach. Learn. Sci. Technol. 2024, 5, 015027. [CrossRef]

13. Gasbarro, A.; Masuda, Y.S.D.; Ordonez, R.C.; Weldon, J.A.; Lubecke, V.M. Accessible and Inexpensive Parameter Testing Platform
for Adhesive Removal in Mechanical Exfoliation Procedures. Electronics 2025, 14, 533. [CrossRef]

14. Wu, K.L.; Yang, M.S. Mean Shift-Based Clustering. Pattern Recognit. 2007, 40, 3035–3052. [CrossRef]
15. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review,

Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178–210. [CrossRef]
16. Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable Parallel Programming with CUDA. Queue 2008, 6, 40–53. [CrossRef]
17. Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In

Proceedings of the Workshop on Machine Learning Systems (LearningSys) in The Thirty-First Annual Conference on Neural
Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

18. Niwano, M.; Murata, K.L.; Adachi, R.; Wang, S.; Tachibana, Y.; Yatsu, Y.; Kawai, N.; Shimokawabe, T.; Itoh, R. A GPU-accelerated
image reduction pipeline. Publ. Astron. Soc. Jpn. 2020, 73, 14–24. [CrossRef]

19. Chabib, A.; Witz, J.F.; Gosselet, P.; Magnier, V. GCPU_OpticalFlow: A GPU accelerated Python software for strain measurement.
SoftwareX 2024, 26, 101688. [CrossRef]

20. Zheng, X.; Ye, H.; Tang, Y. Image Bi-Level Thresholding Based on Gray Level-Local Variance Histogram. Entropy 2017, 19, 191.
[CrossRef]

21. Hao, X.; Liu, X.; Liu, Y.; Cui, Y.; Lei, T. Infrared Small-Target Detection Based on Background-Suppression Proximal Gradient and
GPU Acceleration. Remote Sens. 2023, 15, 5424. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1126/science.1102896
http://www.ncbi.nlm.nih.gov/pubmed/15499015
http://dx.doi.org/10.1038/natrevmats.2016.42
http://dx.doi.org/10.1039/C5TA00252D
http://dx.doi.org/10.1063/5.0090717
http://dx.doi.org/10.1016/j.jmps.2018.03.014
http://dx.doi.org/10.1038/s41598-021-85159-9
http://www.ncbi.nlm.nih.gov/pubmed/33707609
http://dx.doi.org/10.1038/s41598-024-79386-z
http://www.ncbi.nlm.nih.gov/pubmed/39537855
http://dx.doi.org/10.1088/2632-2153/ad2287
http://dx.doi.org/10.3390/electronics14030533
http://dx.doi.org/10.1016/j.patcog.2007.02.006
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1093/pasj/psaa091
http://dx.doi.org/10.1016/j.softx.2024.101688
http://dx.doi.org/10.3390/e19050191
http://dx.doi.org/10.3390/rs15225424

	Introduction
	Materials and Methods
	Background
	Software Overview
	Image Processing Pipeline
	GPU Acceleration
	Automatic Background Masking
	Data Export and Statistical Analysis


	Results
	Performance Benchmarking
	Classification Accuracy

	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

