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Abstract

This report presents both an implementation of a stereo vision depth estimation system
integrated with semantic segmentation for autonomous marine navigation and a compara-
tive analysis of two stereo vision depth estimation approaches: traditional OpenCV-based
stereo matching and the deep learning-based FoundationStereo method. The marine navi-
gation system utilizes the traditional stereo matching method by combining stereo camera
calibration, disparity computation with advanced filtering techniques, and water/land seg-
mentation to provide real-time obstacle detection capabilities for autonomous boats. The
implementation includes a complete processing pipeline from raw stereo images to segmented
distance measurements, deployed as a containerized FastAPI service supporting both ARM
and x86 architectures. The comparative analysis of stereo depth estimation methods was
carried out to assess potential performance gains achievable with increased computational
resources. The study encompassed 120 experimental conditions, varying camera baselines
(6.0 - 12.0 cm), viewing angles (-10° to +10°), and target distances (1.0–10.0 m). Each
condition was processed using five distinct checkerboard calibrations. Results revealed no-
table performance differences among the methods, with FoundationStereo exhibiting both
robustness to calibration quality and superior accuracy and consistency across all conditions.
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1 Introduction

Object detection is a common feature required in many applications, particularly in robotics
and autonomous vehicles. The two primary components required to implement object detection
are sensors and software to interpret the data they acquire. Common types of sensors include
infrared (IR), cameras, light detection and ranging (LIDAR), time-of-flight (ToF), and radio
detection and ranging (RADAR). These types of sensors can generally be categorized into two
types: active and passive. Active sensors—such as LIDAR, RADAR, ToF, and certain types
of IR sensors—operate by emitting a signal (e.g., light, radio waves) and measuring how it re-
flects off surrounding objects. In contrast, passive sensors like optical cameras rely on detecting
ambient signals (visible light) emitted or reflected by objects in the environment. While pas-
sive sensors typically consume less power and offer the advantage of being less detectable, they
are more susceptible to environmental factors such as lighting conditions, fog, or heavy rain,
which can degrade their performance. A notable emerging advantage of passive sensors is that
the rich visual information they provide is becoming increasingly useful due to advancements
in machine-learning techniques. A robust object detection system might combine the usage of
both active and passive sensors in order to reap the benefits of both.

Cameras were selected for use in this project due to their low cost, potential for long-range
object detection, passive nature, and the rich contextual information they provide for machine-
learning applications. A stereo vision technique is employed, using two parallel cameras for
accurate distance estimation through triangulation-based depth computation. The resulting
depth maps undergo post-processing with Weighted Least Squares (WLS) filtering to improve
quality and reduce noise artifacts. An image segmentation model specifically trained to mask
water features is integrated with the stereo depth data, enabling reliable distinction between wa-
ter bodies (classified as safe navigation zones) and land areas (potential obstacles with precise
distance measurements). This integrated approach combines geometric depth estimation with
semantic understanding to provide comprehensive environmental awareness for autonomous ma-
rine navigation. The implementation of a stereo vision system presents a choice between the
use of traditional computer vision approaches refined over decades of computer vision research
and the use of modern deep learning methods. Traditional stereo matching algorithms, such
as those implemented in OpenCV, rely on classical block matching and semi-global matching
techniques as well as edge-preserving filtering algorithms. Though these methods are more com-
putationally efficient and interpretable, they have trouble dealing with certain scenarios such as
textureless regions, repetitive patterns, occlusions, and varying lighting conditions. While Foun-
dationStereo provides state of the art stereo depth estimation, it is computationally expensive
and requires GPU-accelerated hardware. The selection between these two systems requires the
careful consideration between cost and performance.

1.1 Scope and Objectives

This report is structured in two main parts:
Part I: System Implementation - Complete technical implementation of a stereo vision

system integrated with water segmentation for autonomous marine navigation.
Part II: Comparative Analysis - An evaluation of traditional OpenCV stereo matching

versus FoundationStereo deep learning approaches across multiple experimental conditions.

The purpose of this report is to provide both practical guidance for complete system deploy-
ment as well as experimental evidence to justify method selection. The implementation portion
details the data processing pipeline as well as hardware and software requirements, while the
analysis portion compares the performance of the deployed system in a laboratory environment
with a more computationally expensive state of the art method. This methodology facilitates
informed decision-making regarding system architecture choices, particularly when considering
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the balance between real-time processing requirements, hardware limitations, and navigation
safety margins.

Part I

System Implementation and Integration

2 System Architecture and Design

2.1 Implementation Overview

This implementation builds upon the pre-existing ”AutoSailor Docker” repository, extending
the previously developed monocular object detection system with stereo vision capabilities. The
updated system uses stereo camera pairs to enable three-dimensional data processing, while
integrating with the existing U-Net-based water segmentation model to provide depth-aware
environmental perception for autonomous marine navigation.

2.2 Technical Stack

The implementation utilizes the following technologies:

� Python 3.9: Primary runtime environment

� OpenCV 4.x: Computer vision operations and stereo processing

� PyTorch: Deep learning framework for segmentation model inference

� FastAPI: Web framework for REST API endpoints

� Docker: Multi-architecture containerization

� NumPy: Numerical computations and array operations

3 Previous Monocular Approach and Limitations

3.1 Original Distance Estimation Method

The original AutoSailor Docker system implemented a monocular vision approach for distance
estimation using a single camera and water segmentation. This method employed the following
pipeline:

1. Water Segmentation: A U-Net model with ResNet34 encoder classified pixels as water
(white, value 255) or land (black, value 0)

2. Pixel-based Distance Estimation: Distance was calculated based on the vertical po-
sition of the closest land pixel in each angular segment

3. Empirical Formula: A complex empirical formula converted pixel coordinates to distance
estimates

The distance calculation formula used was:

d =
75.95729 + (2047468000− 75.95729)

1 +
( ypixel
138.6823

)23.52245 (1)

where ypixel is the vertical coordinate of the closest land pixel, and d is the estimated distance
in inches.
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3.2 Limitations of Monocular Approach

The monocular method suffered from several fundamental limitations:

� Lack of True Depth Information: Distance estimation relied on geometric assumptions
about camera height and viewing angle

� Empirical Calibration: The complex formula was derived empirically for specific camera
configurations and heights

� Environmental Sensitivity: Performance varied with lighting conditions, water surface
conditions, and camera tilt

� Elevated Obstacle Detection: Unable to estimate distances to objects above the water
surface, such as docks, bridges, or overhanging structures, which represent navigation
hazards

4 Stereo Vision Implementation

4.1 Complete Processing Pipeline

The stereo vision system implements a comprehensive pipeline that transforms raw stereo images
into actionable navigation data. The complete processing flow includes:

1. Stereo Camera Calibration: Calculating calibration parameters using checkerboard
images

2. Undistortion and Rectification: Preprocessing stereo image pairs using precomputed
calibration parameters

3. Disparity Map Computation: Advanced stereo matching with Semi-Global Block
Matching (SGBM) and Weighted Least Squares (WLS) filtering

4. Depth Map Generation: Converting pixel disparity to metric depth using camera ge-
ometry

5. Water Segmentation: Semantic segmentation using a pre-trained U-Net model

6. Spatial Analysis: Dividing the field of view into angular segments and computing nearest
obstacle distances

7. API Integration: RESTful endpoints for real-time processing and result retrieval

4.2 Stereo Camera Calibration

Algorithm 1: Checkerboard Method
Input: Set of stereo image pairs {(IL,i, IR,i)}ni=1 containing checkerboard patterns, Checker-

board dimensions (w, h), Square size s
Output: Camera matrices M1,M2, Distortion coefficients D1, D2, Rectification transforms

R1, R2, Projection matrices P1, P2, Essential matrix E, Fundamental matrix F

1. Initialize object points: objpoints← generateCheckerboardPoints(w, h, s)

2. For each stereo pair (IL,i, IR,i):

(a) cornersL,i ← findChessboardCorners(IL,i, (w, h))

(b) cornersR,i ← findChessboardCorners(IR,i, (w, h))
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(c) Refine corner locations: cornersL,i ← cornerSubPix(IL,i, cornersL,i)

(d) Refine corner locations: cornersR,i ← cornerSubPix(IR,i, cornersR,i)

3. (M1, D1,M2, D2, R, T,E, F )← stereoCalibrate(objpoints, {cornersL,i}, {cornersR,i})

4. (R1, R2, P1, P2)← stereoRectify(M1, D1,M2, D2, R, T )

5. Return M1,M2, D1, D2, R1, R2, P1, P2, E, F

Figure 1: A calibration checkerboard is photographed in varying positions and angles in order to
calculate the stereo cameras’ intrinsic parameters as well as their rotations and positions relative
to each other.

4.3 Distortion Correction and Rectification

The implemented pipeline begins with undistortion and rectification of the input image pair
using precomputed calibration parameters. The rectification process ensures that corresponding
points lie on the same horizontal lines, simplifying the stereo matching problem.

Algorithm 2: Stereo Image Rectification
Input: Left image IL, Right image IR, Calibration matrices M1,M2, Distortion coefficients

D1, D2, Rectification transforms R1, R2, Projection matrices P1, P2

Output: Rectified images I ′L, I
′
R

1. Compute rectification maps: (map1x,map1y)← initUndistortRectifyMap(M1, D1, R1, P1)

2. Compute rectification maps: (map2x,map2y)← initUndistortRectifyMap(M2, D2, R2, P2)

3. I ′L ← remap(IL,map1x,map1y)

4. I ′R ← remap(IR,map2x,map2y)

5. Return I ′L, I
′
R
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Figure 2: Raw images are undistorted and rectified using calibration parameters previously
obtained through checkerboard calibration. The epipolar lines help to verify that the images are
aligned vertically, facilitating horizontal stereo matching for pixel disparity calculation.

4.4 Disparity and Depth Computation

The disparity computation employs Semi-Global Block Matching (SGBM) with several enhance-
ments:

� Border padding: 70-pixel padding to minimize edge artifacts

� Parameter optimization: Dynamically calculated P1 and P2 smoothness parameters

� WLS post-filtering: Weighted Least Squares filtering for disparity refinement
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Figure 3: Each pixel’s value represents the distance it shifted from the left image to the right

4.4.1 Depth Map Calculation

Depth values are computed using the standard stereo vision formula:

Z =
f ×B

d
(2)

where:

� Z is the depth in meters

� f is the focal length in pixels

� B is the baseline distance between cameras

� d is the disparity value
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Figure 4: The depth map shows distance estimations across the entire field of view. The color-
coded visualization uses a jet colormap where blue indicates closer objects and red indicates
more distant objects, providing 3D spatial information at every pixel.

Figure 5: Depth map overlay on the original stereo image. This demonstrates the accuracy of
the stereo matching algorithm by showing depth information in context with the original scene.

5 Water Segmentation Integration

The system integrates a pre-trained U-Net model with ResNet34 encoder for water/land seg-
mentation. The segmentation pipeline includes:

1. Preprocessing: Resize to 512Ö1024 pixels, normalization to [-1, 1] range

2. Inference: Forward pass through the U-Net model

3. Post-processing: Sigmoid activation, thresholding at 0.5, and resize to original dimen-
sions
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Figure 6: Water segmentation mask overlaid on the depth map, showing the integration of
semantic segmentation with stereo depth estimation. Water areas are classified as safe navigation
zones, while land areas represent potential obstacles with meaningful distance estimations.

6 Spatial Analysis and Navigation Output

6.1 Obstacle Distance Computation

The final stage combines depth and segmentation information to provide actionable navigation
data:

Algorithm: Segment Depth Map and Find Nearest Obstacles
Input: Depth mapD, Water segmentation maskW , Occlusion mask O, Number of segments

N , Field of view θfov, Maximum distance Dmax, Center direction θc
Output: Dictionary mapping angles to nearest distances

1. Create masked depth map: Dm[i, j] =

{
D[i, j] if W [i, j] = 0 (land)

Dmax if W [i, j] = 1 (water)

2. Apply occlusion mask: Dm[i, j] =

{
Dm[i, j] if O[i, j] = 1 (valid)

Dmax if O[i, j] = 0 (occluded)

3. Calculate segment parameters:

(a) wsegment = ⌊width/N⌋
(b) θper segment = θfov/N

(c) θstart = θc − (θfov/2)

4. Initialize distances dictionary: distances = {}

5. For i = 0 to N − 1:

(a) Calculate pixel boundaries:

i. colstart = i× wsegment

ii. colend = min(colstart + wsegment, width)

(b) Extract segment: S = Dm[:, colstart : colend]

10



(c) Calculate nearest distance: dnearest = min(S)

(d) Calculate segment center angle:

i. θcenter = θstart + (i+ 0.5)× θper segment

ii. θcenter = θcenter mod 360

(e) Store result: distances[round(θcenter)] = dnearest

6. Return distances

6.2 Final Output Visualization

The complete stereo vision pipeline produces comprehensive distance measurements for au-
tonomous navigation.

Figure 7: Final output showing angular segments overlaid on the depth map with distance
measurements. Each segment represents a navigation direction with the nearest obstacle distance
computed from the integrated stereo depth and water segmentation data. White dashed lines
indicate segment boundaries, and black dots mark the closest detected obstacles in each sector.
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Figure 8: Quantitative distance measurements by angular segment, showing the final navigation
output. The bar chart displays the nearest obstacle distance for each angular direction, providing
clear actionable information for autonomous navigation algorithms. The red line indicates the
camera center direction, and distances are measured in meters.

7 API Design and System Integration

7.1 RESTful Interface

The stereo vision system is exposed through a FastAPI-based REST interface with the following
endpoints:

� POST /set stereo parameters: Upload stereo images and calibration data

� GET /get stereo distances: Retrieve computed distance measurements

� GET /stereo status: Check processing status

7.2 Asynchronous Processing

The system implements asynchronous processing to prevent blocking during computationally
intensive operations:

Listing 1: Asynchronous Processing Implementation

1 class Stereo:

2 def __init__(self):

3 self.processing_stereo = False

4 self.distances = {}

5

6 def compute_stereo_distances(self):

7 if self.processing_stereo:

8 raise SystemError("Already processing stereo images")

9

10 self.processing_stereo = True

11 try:

12 # Stereo processing pipeline

13 # ... (rectification , disparity , depth , segmentation)

14 self.processing_stereo = False

15 return self.distances

16 except Exception as e:

17 self.processing_stereo = False
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18 raise e

8 Performance Analysis and Validation

8.1 System Performance Metrics

Figure 9 depicts the performance of 2 different computer systems running this pipeline for
varying image scale factors.

Figure 9: Computation time on a desktop computer vs Raspberry Pi 4

9 Deployment and Multi-Architecture Support

9.1 Containerized Deployment

The system supports deployment across multiple architectures through Docker containerization:

� x86 Development: Full PyTorch with CUDA support for development and testing

� ARM Production: CPU-optimized PyTorch for Raspberry Pi deployment

� Multi-stage builds: Optimized container sizes for production deployment

9.2 Performance Optimization

Several optimizations were implemented to improve processing speed:

� Efficient memory management: In-place operations where possible

� Vectorized computations: NumPy operations for bulk array processing

� Selective filtering: Optional WLS filtering based on quality requirements

� Configurable parameters: Adjustable segment count and field of view
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Part II

Comparative Analysis of Stereo Vision
Methods

10 Methodology and Experimental Design

10.1 Experimental Framework

Both stereo vision methods were evaluated using the same experimental dataset to ensure fair
comparison. The dataset encompassed:

� Camera Baselines: 6.0, 8.0, 10.0, and 12.0 cm

� Viewing Angles: -10°, 0°, and +10°

� Target Distances: 1.0 to 10.0 m (1 m increments)

� Calibrations: 5 independent calibration sessions per method

� Total Conditions: 120 experimental scenarios per method

10.2 Methods Under Evaluation

10.2.1 Traditional OpenCV Approach

The traditional method employs classical stereo matching algorithms implemented in OpenCV,
including:

� Block matching for correspondence estimation

� Semi-global block matching (SGBM) for improved accuracy

� Standard post-processing filters

� Geometric triangulation for depth calculation

10.2.2 FoundationStereo Deep Learning Approach

FoundationStereo represents a state-of-the-art deep learning approach featuring:

� Convolutional neural networks trained on large stereo datasets

� End-to-end learning of stereo correspondence

� Advanced feature extraction and matching

� Learned post-processing and refinement

11 Performance Analysis Results

11.1 Overall Accuracy Comparison

Table 1 summarizes the overall performance metrics for both methods across all experimental
conditions.

The results demonstrate a dramatic performance advantage for FoundationStereo, with
approximately 10Ö lower mean absolute error and relative error compared to the traditional
OpenCV approach.
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Table 1: Stereo Vision Method Comparison: OpenCV vs FoundationStereo

Metric OpenCV FoundationStereo Improvement (%)

Total Measurements 600 600 0.00

Absolute Error Metrics (m)
Mean Absolute Error 1.7660 0.5670 67.89
Median Absolute Error 0.6699 0.1798 73.16
Min Error 0.0013 0.0001 90.98
Max Error 22.9307 36.6143 -59.67
Std Dev Absolute Error 3.0388 1.7472 42.50

Relative Error Metrics (%)
Mean Relative Error 70.0106 7.7773 88.89
Median Relative Error 10.8813 3.6080 66.84
Std Dev Relative Error 228.1086 18.1158 92.06

12 Distance-Based Performance Analysis

12.1 Accuracy vs. Target Distance

Figure 10 shows how accuracy varies with target distance for both methods.

Figure 10: Mean absolute error and mean relative error vs. target distance comparison

12.2 Distance and Baseline-Based Performance Analysis

Figure 11 illustrates the error distribution patterns for both methods across all baselines and
distances, grouped by calibrations and viewing angles.
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Figure 11: Absolute and relative signed error distribution comparison between methods

These heatmaps reveal that OpenCV’s performance degrades at short distances (1-2 meters)
as the baseline increases. This degradation is expected because larger baselines create greater
distances between cameras, resulting in more occluded areas. In contrast, FoundationStereo does
not exhibit this performance decline with increased baseline distance. However, both methods
show progressively worse performance at larger distances when using smaller baselines. This
phenomenon is especially pronounced in FoundationStereo—while it still outperforms OpenCV
overall, the heatmap demonstrates a dramatic reduction in its performance as distance increases
with the shortest baseline tested (6 cm).

13 Calibration Consistency Analysis

13.1 Inter-Calibration Variability

Figure 12 depicts box plots comparing the consistency across different calibrations for both
OpenCV and FoundationStereo.
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Figure 12: Absolute and mean error distribution comparison between methods

These box plots reveal that OpenCV is more sensitive to calibration quality, with significant
outliers extending far beyond the interquartile range. In contrast, FoundationStereo demon-
strates much greater consistency across calibrations, with fewer and less extreme outliers. How-
ever, FoundationStereo’s error distributions still correlate with OpenCV’s patterns across dif-
ferent calibrations. This indicates that while FoundationStereo is considerably more resilient to
calibration variance, it still benefits from high-quality calibration data.

13.2 Key Findings from Comparative Analysis

The evaluation across 120 experimental scenarios per method reveals several insights for stereo
vision system deployment.

1. Accuracy Superiority: FoundationStereo achieves approximately 10Ö improvement in
both mean absolute error (1.766m to 0.567m) and mean relative error (70.01% to 7.78%)
compared to OpenCV, with error reductions of 67-89% across key metrics.

2. Distance-Dependent Characteristics: OpenCV exhibits extremely unreliable estima-
tions for short distances (1-2m) with larger baselines likely due to increased occlusion
effects. FoundationStereo maintains consistent performance across baseline variations at
short distances but shows pronounced decline at extended distances with minimal baselines
(6cm) though still outperforming OpenCV.

3. Calibration Robustness: FoundationStereo demonstrates substantially reduced sen-
sitivity to calibration quality variations, with fewer extreme outliers and tighter error
distributions across independent calibration sessions, suggesting lower maintenance re-
quirements and improved field reliability.

4. Deployment Implications: FoundationStereo excels in applications requiring precision
depth estimation but demands significant computational resources. OpenCV, while less
accurate, offers substantial computational efficiency and would greatly benefit from data
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assimilation techniques such as Extended Kalman Filters or particle filters to smooth tem-
poral inconsistencies. With proper filtering, OpenCV’s lightweight computational foot-
print makes it suitable for real-time object detection and rough distance estimation in
resource-constrained environments, while FoundationStereo remains optimal for applica-
tions where depth precision is necessary.

14 Conclusions and Future Work

14.1 Key Achievements

1. Technical Implementation: Complete production-ready system integrating stereo depth
estimation with semantic segmentation

2. Practical Deployment: Multi-architecture containerized solution suitable for both de-
velopment and embedded platforms

3. Integration Success: Seamless integration with existing AutoSailor Docker platform

4. Scientific Validation: Comparative analysis proving 10Ö accuracy improvement of deep
learning approaches over traditional methods

14.2 Technical Contributions

The key technical contributions include:

� Integrated segmentation framework combining depth and semantic information

� Spatial analysis approach providing navigation-relevant distance measurements

� Robust API design with asynchronous processing capabilities

14.3 Future Research Directions

Several areas for future development have been identified:

1. Real-time Optimization: GPU acceleration and algorithm optimization for faster pro-
cessing

2. Multi-modal Fusion: Integration with other sensor modalities (GPS, IMU, compass,
radar)

3. Machine Learning Enhancement: Learning-based stereo matching for improved accu-
racy in challenging conditions

4. Environmental Robustness: Extended testing in various weather and lighting condi-
tions
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